
J. Fluid Mech. (1997), vol. 345, pp. 101–131. Printed in the United Kingdom

c© 1997 Cambridge University Press

101

Oscillatory flow past a circular cylinder in a
rotating frame

By M. D. K U N K A1 AND M. R. F O S T E R2

1Department of Mathematics,
2Department of Aerospace Engineering, Applied Mechanics and Aviation,

The Ohio State University, Columbus, OH, 43210, USA

(Received 1 July 1996 and in revised form 16 December 1996)

Because of the importance of oscillatory components in the oncoming flow at certain
oceanic topographic features, we investigate the oscillatory flow past a circular cylinder
in an homogeneous rotating fluid. When the oncoming flow is non-reversing, and for
relatively low-frequency oscillations, the modifications to the equivalent steady flow
arise principally in the ‘quarter layer’ on the surface of the cylinder. An incipient-
separation criterion is found as a limitation on the magnitude of the Rossby number,
as in the steady-flow case. We present exact solutions for a number of asymptotic
cases, at both large frequency and small nonlinearity. We also report numerical
solutions of the nonlinear quarter-layer equation for a range of parameters, obtained
by a temporal integration. Near the rear stagnation point of the cylinder, we find a
generalized velocity ‘plateau’ similar to that of the steady-flow problem, in which all
harmonics of the free-stream oscillation may be present. Further, we determine that,
for certain initial conditions, the boundary-layer flow develops a finite-time singularity
in the neighbourhood of the rear stagnation point.

1. Introduction
A number of important biological and physical phenomena are peculiar to large

oceanic seamounts. There is ample evidence of the physical effects in the literature:
Owens & Hogg (1980), Huppert & Bryan (1976) and Gould, Hendry & Huppert (1981)
all show flow effects due to the topography, some of which can be reasonably well
modelled by some simple baroclinic theories. However, there is some recent evidence
of significant impact on seamount-surface fauna that is particular to the seamount
environment (Genin et al. 1986). It is sometimes the case that seamounts are imbedded
in oscillatory currents because of significant tidal components to the circulation in the
seamount neighbourhood. However, the greatest part of the literature on theoretical
and laboratory modelling of such flows considers only objects in steady streams. (See,
for example, Hogg 1973; Baines & Davies 1980; Boyer, Davies & Holland 1984;
Boyer et al. 1987; Foster 1989.)

Apart from some earlier work by Huppert & Bryan (1976) incorporating some
effects of unsteadiness, there has been more recent activity on the effects of oscillatory
flows near seamounts, or their laboratory representations. Verron (1986) found
both localized near-seamount effects and also significant effects on seamount wake
signatures from unsteadiness in the oncoming flow. Such effects have also been seen
in the laboratory studies of Boyer & Zhang, for idealized shapes (1990b) and for a
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more realistic seamount geometry as well (1990a). Effects of cross-stream oscillation
have been investigated by Xu, Boyer & Zhang (1993), with effects of stratification –
not directly relevant to the present investigation – explored in a series of experiments
by Zhang & Boyer (1993). Rectified currents, when oscillatory components in the
oncoming flow induce steady circulations, arise in many of these laboratory situations.
The papers of Boyer and his co-workers that are of most relevance to the work
reported here are Boyer & Zhang (1990b) and Boyer et al. (1991), though the former
concentrates on the wake signatures that arise at Rossby numbers larger than those
considered here.

As a way of beginning on the theoretical questions involving unsteadiness at a
seamount, we explore in this paper the homogenous rotating flow past an idealized
shape for the case when the oncoming stream has an oscillatory component but
is non-reversing. We know from the spectrum of, say, the Feiberling Guyot (P.
Lonsdale 1988, personal communication), that there are a variety of frequencies
that are important. The obvious dimensionless parameter is ω′/Ω, where ω′ is the
oscillation frequency and Ω is the rotation rate of the frame of reference. In this
paper, we explore two portions of the frequency range in which modifications due to
unsteadiness occur principally in the surface boundary layer of the obstacle. Since the
seminal experiments of Taylor (1923, for example), it has been evident that Coriolis
forces can delay breakaway of the boundary layer from the surface to relatively large
Reynolds numbers – far beyond the critical Reynolds numbers for separation in
non-rotating flows. How does an oscillatory component alter that behaviour? For the
greater part of the paper, we consider quite low frequencies, i.e. ω′/Ω of the order of
the half-power of the Ekman number. We discover the conditions under which the
flow first breaks away from the surface. Later in the paper, we investigate the flow
for ω′ = O(Ω), but only for a cylinder that spans the entire depth of the fluid layer.
It is clear from P. Lonsdale (1988, personal communication) that there are significant
time scales from a few hours to times of several days – so it is not unreasonable to
examine the low-frequency modes as well as the more obvious choice ω′ = O(Ω). The
most interesting scenario, which is beyond the scope of the present work, is one in
which there is nonlinear interaction of the currents due to the dominant frequencies
in the spectrum.

In a related problem from the study of the flow of electrically conducting fluids,
Leibovich (1967) and Buckmaster (1969) found a criterion for separation for flow
at high Reynolds number past a circular cylinder. Walker & Stewartson (1972,
1974) related this problem to the problem of flow past a circular cylinder and then a
hemisphere in a rapidly rotating frame of reference. Their analysis of the rotating-flow
problem rests on a sequence of papers that dealt with the boundary- and shear-layer
structures in these flows. (See Proudman 1956; Stewartson 1957, 1966; Jacobs 1964
and Moore & Saffman 1969, for example.)

Rather than the Reynolds number, it is more convenient to work with the Rossby
number, ε ≡ U/Ωh, and the Ekman number, E ≡ ν/Ωh2, where ν is the kinematic
viscosity, U is the fluid velocity scale from the flow far from the bump, h is the layer
depth and the object imbedded in the flow has radius ah. Both ε and E can be
quite small in oceanic settings. (See, for example, Boyer et al. 1991.) The Reynolds
number is then ε/Ea. The parameter which is important in characterizing the flow
separation phenomenon is λ ≡ ε/(aE1/2); Walker & Stewartson (1972) found incipient
boundary-layer separation at λ = 1.

The boundary layer on the vertical cylinder wall, the familiar ‘quarter layer’, is
nonlinear and hence solutions must in general be found numerically; however, there
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are self-similar solutions of these equations valid near the forward and rear stagnation
points on the cylinder. In the context of the MHD problem, both Leibovich (1967) and
Buckmaster (1969) found that, while there is no difficulty with the forward stagnation
point, there are interesting things happening at the rear location: for λ < 1/2,
solutions to the similarity equation exist, but for λ > 1, the shear stress is negative
and the boundary layer presumably leaves the surface. For 1/2 < λ < 1, no similarity
solution can be found that satisfies the edge velocity condition, but the appropriate
solution asymptotes instead to what we shall refer to as a ‘plateau’ velocity: an
extensive flat portion of the velocity profile, in the middle of the boundary layer.
Unable to find the solution that connects this flat plateau-like behaviour to actual
edge velocity, both Buckmaster and Leibovich speculated that some unsteadiness or
other complexity occurs in the range 1/2 < λ < 1.

Walker & Stewartson (1972, 1974) found that in the (related) rotating flow problem
there is no difficulty whatever in obtaining the numerical solution of the quarter-layer
equation all the way to the rear stagnation point so long as λ < 1. Page (1985)
reported that, indeed, the similarity equations have solutions for all λ < 1, but flow
near the rear stagnation point is not completely described by the similar solution if
1/2 < λ < 1. Finally, Page & Cowley (1988) determined that in this latter range, the
boundary layer near the rear stagnation point has a steady three-zone structure; the
similarity equations describe the innermost region, including the plateau region noted
above (Leibovich 1967; Buckmaster 1969).

As noted above, we explore in this paper the effects of upstream temporal oscillation
on the flow past a large cylindrical obstacle. (‘Large’ here means only that the cylinder
is tall enough to protrude through the benthic boundary layer, occupying a significant
portion of the fluid layer.) The cylinder need not extend from the bottom to the top
of the fluid layer for the low-frequency analysis presented here to be valid (Foster
1972). Therefore, we take the far-upstream velocity to be

U (1 + γ cos(ωt)) ;

γ is a constant and ω is a non-dimensional frequency, ω = (ω′/Ω)/E1/2. Throughout
this paper, we take the upstream flow to be non-reversing, so that |γ| < 1. There
is some experimental work (Hudspeth 1991) that suggests that the parameter of
greatest significance in such oscillatory flows is the Keulegan-Carpenter parameter,
which is K = U/(ω′ah). For the case when ω = O(1), this quantity is also O(1), since
K = λ/ω. So, at these small Rossby numbers, λ = O(1) seems the critical order from
the experiments as well. (The importance of K was first noted in the seminal paper
by Keulegan & Carpenter 1958.)

The goal of this particular analysis is to inquire into the nature of the breakdown
in the boundary-layer flow that leads to breakaway of the layer from the surface,
and in particular to determine the critical value for λ as a function of γ. In §2 of the
paper, we formulate the boundary-layer problem, and in §3 we construct the (regular)
perturbation problem for small λ, and also an asymptotic solution for large ω.

In §4, we investigate the self-similar structure near the rear stagnation point,
where breakaway begins; we find an extremely complicated behaviour of the solution
there, recovering for γ → 0 the plateau velocity seen in the steady problem and its
generalization as a long-time periodic plateau, if γ = O(1). We also determine that,
for a general initial-value problem for the edge velocity, the periodic plateau is not
always the long-time limit. There may be a breakdown at a finite time that moves
the flow to a quite different state.

In §5, we formulate the full finite-difference problem for the boundary-layer equa-



104 M. D. Kunka and M. R. Foster

tion, and solve it with a time integration, to determine the critical λ(γ, ω). Solutions
there are compared near the rear stagnation point with the self-similar results from
§4; in general, the agreement is excellent, though we find the detailed determination of
critical γ to be extremely sensitive to truncation error in the time – space integration.

We briefly present the results for the case ω′ = O(Ω) in §6. We find the same
splitting of the layer into an outer quarter layer and an inner Stokes layer – this time
of width E1/2 – as is found for the large-ω case of §3. However, these results are
limited to cylinders that span the entire distance from one plate to another.

The ‘rectification’ phenomenon, i.e. the transfer of energy from the oscillation to the
steady anticyclonic motion around the obstacle, which has been explored by Boyer
and colleagues, is not in evidence here. Zimmerman’s (1980) results indicate that it is
vortex stretching that produces rectification. The only vortex stretching occurring in
this parameter range arises in the quarter layer, and it is very weak, being related to
the Ekman outflow. Hence, it is not surprising that there is no rectification here.

There are questions related to the general initial-value problem not thoroughly
investigated in this paper; what we have shown is that there are time-periodic
solutions to the equations of motion for λ < 1. We do know that the time-periodic
solutions found here are stable, but we do not yet know the full extent of their
domain of attraction; that must await a subsequent paper.

However, analysis of the start-up of a cylinder from rest to a state of uniform
motion has been reported by Stocker, Duck & Page (1997), who find that, for
λ < 1/3, a steady state does indeed develop, but for larger values of λ, a finite-time
singularity arises in the boundary layer, consistent with what we find in §4 for the
oscillatory case, where we also find the possibility of finite-time singularities near the
rear stagnation point when the cylinder is accelerated to its long-time state.

Finally, as we have implied above and will become explicit in the next Section,
throughout the analysis the Rossby number, ε, is O(E1/2). Typical numbers for an
oceanic seamount, say the Fieberling Guyot, as quoted in Boyer et al. (1991), give the
ratio ε/E1/2 = U/(νΩ)1/2 to be no smaller than 10 at best, so the direct applicability
of this analysis is weak, except for the fact that the proper choice of ν for turbulent
transport is not really known, and a factor of 3 or so larger than the number taken
by Boyer (0.1 m2 s−1) puts such a seamount into the parameter range of this paper.
For the most part, this analysis ought to be thought of as a limiting case. It is worth
pointing out that the ratio ε/E1/2, being independent of any length scale, depends on
two variable quantities only: ν and U.

2. Problem formulation
We consider now the flow of an incompressible fluid between two infinite parallel

plates, located at z′ = 0 and z′ = h, with a right circular cylinder with diameter
2ah and height less than or equal to h, standing at the origin (figure 1). The
plates and cylinder rotate about the z′-axis with angular velocity Ω. The coordinate
system rotates with the plates and cylinder. A uniform oscillating flow of speed
U(1 + γ cos(ω′t′)) is forced between the plates in the positive x′-direction. The flow
is characterized by a number of dimensionless parameters, which are the Ekman
number E, Rossby number ε, oscillation amplitude γ, and oscillation frequency ω,
with E, ε, and ω defined respectively by

E ≡ ν

Ωh2
, ε ≡ U

Ωh
, ω ≡ ω′

ΩE1/2
. (2.1)
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Figure 1. Geometric configuration for the problem under study. The labels (x, y) and (u, v)
indicate the notation used in the boundary-layer analysis.

The non-dimensional equations of motion for this problem are

∇ · u = 0, (2.2)

E1/2 ∂u

∂t
+ ε(u · ∇)u+ 2k × u+ ∇p = E∇2u. (2.3)

u = 0 on solid surfaces, (2.4)

u ∼ (1 + γ cos(ωt))∇x for |x| → ∞, (2.5)

where lengths have been made dimensionless with h, velocities with U, pressure
by ρUΩh, frequency by ΩE1/2, as noted above, and time by a compatible scaling
(ΩE1/2)−1. This choice of time scale makes the quarter layer fully unsteady. For
shorter time scales (and higher frequencies), the layer structure is quite different,
involving a Stokes layer, for example; on longer time scales, the quarter layer is
essentially steady, so there are no unsteady effects in boundary-layer breakaway.

The analysis of the geostrophic flow past a circular cylinder, obtained by letting ε
and E go to zero in the equations of motion and incorporating the effects of Ekman
suction on the walls, is well known; see, for example, Foster (1972). The result is that
the outer flow is essentially the classical solution for irrotational incompressible flow
past a circular cylinder (cf. Barcilon 1970), in this case with an oscillatory free stream,

uo = (1 + γ cos(ωt))∇
(
(1 + a2/r2)r cos(θ)

)
. (2.6)

The Taylor–Proudman theorem implies, of course, that this geostrophic flow is
independent of the vertical coordinate, z. In contrast with the classical problem of
flow past a cylinder, the presence of the Coriolis forces in the boundary layer delays
onset of boundary-layer separation to quite high Reynolds numbers, as we know
from Walker & Stewartson (1972), as discussed in §1. So, we turn to the solution of
the boundary-layer equation on the cylindrical surface.
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The structure of the Stewartson layers on the cylindrical surface may be found
throughout the rotating-flow literature (again, see Foster 1972, as an example), so
we omit all details here and simply note that since the 1/3-layer is passive, and
quasi-steady on this time scale, all of the dynamics occurs in the layer of width
E1/4, referred to throughout this paper as the ‘quarter layer’. Because of the circular
geometry, we begin with the usual circular polar coordinates (r, θ, z). Since the flow
is left-to-right (see figure 1), the rear stagnation point is at θ = 0, so it is better to
use intrinsic coordinates with origin at the forward stagnation point. Thus, we write
the radial and θ velocity components as E1/4u/a and −v respectively, and define a
coordinate along the surface, x ≡ π − θ. Then, the limit of the equations of motion
(2.2), (2.3) as E → 0 for y ≡ (r − a)/E1/4 fixed is

∂v

∂x
+
∂u

∂y
= 0, (2.7)

∂v

∂t
+ λ

(
v
∂v

∂x
+ u

∂v

∂y

)
+ 2v =

∂ve

∂t
+ λve

∂ve

∂x
+ 2ve +

∂2v

∂y2
. (2.8)

In these equations, ve is the θ-direction velocity at the edge of the layer, obtained
from (2.6):

ve = 2 sin(x) (1 + γ cos(ωt)) . (2.9)

The parameter in (2.8) which measures the importance of fluid inertia is

λ ≡ ε

E1/2a
. (2.10)

We note that (2.7), (2.8) are precisely the equations for the Prandtl boundary layer
on the surface of the cylinder apart from the very significant addition of the Coriolis
term. So, to complete the specification of the problem, we note that the boundary
conditions are

u(x, 0, t) = 0, v(x, 0, t) = 0, v(x,∞, t) = ve, (2.11)

v(0, y, t) = 0, v(π, y, t) = 0. (2.12)

Boundary condition (2.12) needs further explanation. Because the problem domain is
about a cylinder, the velocities are periodic in x, which is a single boundary condition
connecting two distinct boundaries. Furthermore, when we cut the domain in half by
symmetry, we still need to say something about both boundaries. Since v is an odd
function of x, conditions (2.12) follow; it is a single boundary condition, even though
it looks like two.

In previous discussions of the steady problem (Page & Cowley 1988; Page 1985;
Walker & Stewartson 1972), an ‘interaction parameter’ N was used to characterize
the nonlinearity, instead of our quantity λ, in order to maintain the connection
with the equivalent magnetohydrodynamic problem, which is governed by the same
equations (Buckmaster 1971, 1969; Leibovich 1967). This paper uses λ, and these two
parameters are related by

N =
1

λ
. (2.13)

The solution of equations (2.7), (2.8), subject to (2.11), (2.12), occupies the rest of
this paper. There are two other parameters of note in the equations: γ and ω. In
the next Section, we explore a number of analytical and asymptotic solutions for
small values of λ and/or 1/ω before turning to the more general problem when these
parameters are of O(1).
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3. Analytic and asymptotic results
With three parameters in them, the quarter-layer equations (2.7), (2.8) yield readily

to asymptotic analysis. There are also several analytical results that are valid without
taking an asymptotic limit. We consider first under what circumstances the assumed
edge velocity (2.8) can be shown to be consistent with an initial-value problem for
the quarter layer. Next, we find an asymptotic solution in the λ→ 0 limit. Finally, we
consider the ω → ∞ limit, with λ, γ = O(1). A few other asymptotic cases, and more
detail of what follows may be found in Kunka (1991).

3.1. Stability of the edge velocity

In the formulation of this problem, we have taken the edge velocity to be given
by (2.9). The question is as follows: Is the edge condition consistent with a general
initial-value problem for this flow? We can determine the λ-range for which a solution
is in the form we seek by examining the stability of the equations at the edge of the
quarter layer, to see if the edge velocity is a stable solution there. For simplicity, we
consider only the linear stability problem.

We begin by assuming that the velocity v in the quarter layer consists of the steady
solution plus a small perturbation, then take the limit of (2.8) as y →∞,

v = ve + δve(x, t), (3.1)

∂

∂t
δve + λve

∂

∂x
(δve) +

(
2 + λ

∂ve

∂x

)
(δve) = 0, (3.2)

where we have neglected small nonlinear terms to obtain (3.2) and further supposed
that viscous terms are small at the edge. The solution of equation (3.2) is easily found
to be

δve(x, t) =
δveo(xo) e−2t

cosh(q(t)) + sinh(q(t)) cos(x)
,

q(t) ≡ 2λ
(
t+

γ

ω
sin(ωt)

)
,

 (3.3)

where xo is the value of x where the characteristic leaves the t = 0 line, and δveo(x)
is the initial value of the perturbation. The quantity xo is given implicitly by the
equation

tan
(

1
2
xo
)

= tan
(

1
2
x
)

e−2λ(t+(γ/ω) sin(ωt)). (3.4)

It is immediately evident from the long-time behaviour of (3.3) that the disturbance
decays for all positive values of λ,

δve(x, t) ∼
δve(xo) 2e−2(1+λ)t−(2λγ/ω) sin(ωt)

1 + cos(x)
for t→∞, x < π. (3.5)

However, this solution is not the proper long-time limit of (3.3) near x = π. Precisely
at x = π, (3.3) gives

δve ∼ δveo(π) e−2(1−λ)t+(2λγ/ω) sin(ωt) for t→∞, (3.6)

so there is clearly some difficulty near the rear stagnation point, since this perturbation
decays to zero only so long as λ is less than 1. We explore in much greater detail the
behaviour of the solutions near x = π in §4. Finally, a look at the characteristic map
from (3.4) shows that all characteristics leaving the t = 0 line eventually asymptote
x = π, except the one from x = 0. Thus the forward stagnation point similarity
solution makes sense at long times, but again there is obvious trouble near x = π.
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3.2. Weakly nonlinear case: λ� 1

In this case, the long-time leading-order solution is just a generalization of the linear
solution of Barcilon (1970) and Walker & Stewartson (1972). The oscillatory free
stream has an order-one effect on the leading-order flow. This case thus provides an
excellent test for verifying the numerical method used in §5.

The solution is written as a regular perturbation expansion, with velocity compo-
nents expanded in asymptotic series that begin

v = v0 + λv1 + . . . , u = u0 + λu1 + . . . . (3.7)

The higher-order corrections to the outer flow require λ � E1/4 for the series to be
of the form (3.7). These series are substituted into the governing equations (2.7), (2.8)
and like powers of λ are collected and each problem for vi and ui is solved in turn, in
the usual way. The linear equations are solved with the help of Laplace transforms
and only that part of the Laplace inversion corresponding to the long-time periodic
solution is given here; transients are not written down. Hence, the leading-order
solution for t→∞ is

v0 = 2 sin(x)
(

1− e−
√

2y
)

+ 2γ sin(x)
[
cos(ωt)− e−Ay cos(ωt− By)

]
, (3.8)

rlu0 =−2 cos(x)

[
y − 1√

2

(
1− e−

√
2y
)]

−2γ cos(x)

[
y cos(ωt) +

e−Ay

A2 + B2
(A cos(ωt− By) + B sin(ωt− By))

]
+2γ

cos(x)

A2 + B2
(A cos(ωt) + B sin(ωt)) , (3.9)

where

A = Re
(
(2 + iω)1/2

)
=
(

1
2
(4 + ω2)1/2 + 1

)1/2
, (3.10a)

B = Im
(
(2 + iω)1/2

)
=
(

1
2
(4 + ω2)1/2 − 1

)1/2
. (3.10b)

Clearly, if λ ≡ 0, then (3.8), (3.9) is the exact solution for all γ and ω. The details
of the first correction v1 can be found in Kunka (1991), and are summarized in the
Appendix.

Using the solution for v0, the leading-order shear stress and displacement thickness
are found to be

τwall =
∂v0

∂y

∣∣∣∣∣
y=0

= 2 sin(x)
[√

2 + γ(A cos(ωt)− B sin(ωt))
]
, (3.11)

δ∗0 =

∫ ∞
0

(
1− v0

ve

)
dy =

1/
√

2 + [γ/(A2 + B2)] (A cos(ωt) + B sin(ωt))

1 + γ cos(ωt)
. (3.12)

An examination of (3.11) reveals that, for a given ω, if γ is large enough, and still
less than one, the shear stress will periodically become negative, namely the flow will
periodically reverse.

3.3. High-frequency oscillation: ω � 1, λ = O(1)

We consider now the character of the quarter-layer solution for high oscillation
frequency, and to that end define a scaled time variable, τ ≡ ωt, and take τ = O(1)
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with ω � 1. Substitution of this change of variable into (2.8) leads to a scaled
quarter-layer equation,

∂v

∂τ
− ∂ve

∂τ
+
λ

ω

[
u
∂v

∂y
+ v

∂v

∂x
− ve

∂ve

∂x

]
+

2

ω
(v − ve) =

1

ω

∂2v

∂y2
. (3.13)

We write the outer expansion as

v = v0 +
1

ω
v1 + . . . , λ = O(1). (3.14)

and substitution of (3.14) into (3.13) leads to a hierarchy of perturbation problems,
the first of which is

∂v0

∂τ
− ∂ve

∂τ
= 0, (3.15)

whose solution is

v0 = ve + F(x, y). (3.16)

Working to next order leads to the equation for v1,

∂v1

∂τ
=
∂2F

∂y2
− 2F − λ

[
(−yvex + û0)

∂F

∂y
+

∂

∂x

(
veF + 1

2
F2
)]
, (3.17)

∂û0

∂y
+
∂F

∂x
= 0, u0 = −yvex + û0. (3.18)

Terms on the right-hand side of (3.17) that are time-periodic lead to periodic portions
of v1; those terms that are time-independent lead to secular terms in v1, invalidating
the asymptotic series (3.14) at long times. Thus, to avoid that secularity, we require
that all time-independent terms on the right-hand side of (3.17) add up to zero.
Hence,

∂2F

∂y2
− 2F − λ

[
(−yv(s)

ex + û0)
∂F

∂y
+

∂

∂x

(
v(s)
e F + 1

2
F2
)]

= 0, (3.19)

where we have split the edge velocity, ve, into time-independent and time-periodic
components, as

ve = v(s)
e + v(p)

e ,

v(s)
e = 2 sin(x), v(p)

e = 2γ sin(x) cos τ.

}
(3.20)

For convenience, then, we also let V0(x, y) denote the time-independent portion of v0,
so therefore,

v0 = ve + F = (v(s)
e + F) + v(p)

e = V0 + v(p)
e ,

û0 = U0 + yv(s)
ex .

}
(3.21)

Hence, in this notation, equation (3.19) becomes

∂2V0

∂y2
− 2(V0 − v(s)

e )−λ
[
U0

∂V0

∂y
+ V∂V0

∂x

− v(s)
e

dv(s)
e

dx

]
= 0,

∂U0

∂y
+
∂V0

∂x
= 0.

 (3.22)

Therefore, (U0, V0) satisfy precisely the quarter-layer equations for the steady flow
past the cylinder – on this outer-y scale. Having avoided secular terms in v1, equation
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(3.17) now reduces to a simpler form,

∂v1

∂τ
= −λ

[
∂v(p)

e

∂x

(
F − y∂F

∂y

)
+ v(p)

e

∂F

∂x

]
, (3.23)

so integrating, we obtain the simple result

v1 = −2λγ sin τ

[
cos(x)

(
F − y∂F

∂y

)
+ sin(x)

∂F

∂x

]
+ G(x, y), (3.24)

where G(x, y) is determined by eliminating secular terms in the next order. In order
to match to the lower layer, we need to evaluate the outer expansion for small y.
Hence, using these solutions, we have the behaviour of v for small y,

v ∼ v(p)
e + V0y(x, 0)y + 1

2
y2V0yy(x, 0) + . . .+

1

ω
v1(x, 0) + . . . . (3.25)

Examination of the equation (3.13) indicates that the appropriate inner limit gives a
Stokes layer, so y = Y /ω1/2, and hence the form of (3.25) suggests an inner expansion
in the form

v ∼ ṽ0(x, Y , τ) + ω−1/2ṽ1(x, Y , τ) + ω−1ṽ2(x, Y , τ) + . . . . (3.26)

The limit of (3.13) for Y fixed and ω →∞ is

∂ṽ0

∂τ
− ∂v(p)

e

∂τ
=
∂2ṽ0

∂Y 2
. (3.27)

The solution which matches to the first term of (3.25) is

ṽ0 = 2γ
[
cos τ− e−Y /

√
2 cos(τ− Y /

√
2)
]

sin(x). (3.28)

The second term in (3.26) satisfies an equation like (3.27) but without the ve term,
and its solution, which matches to the second term in (3.25), is v1 = V0y(x, 0)Y . The
v2 equation may be put in the form

∂ṽ2

∂τ
+ λ

[
ũ0

∂ṽ0

∂Y
+ ṽ0

∂ṽ0

∂x
− ve

∂ve

∂x

]
+ 2(ṽ0 − ve) =

∂2ṽ2

∂Y 2
, (3.29)

which, according to (3.25), must have the large-Y behaviour given by

ṽ2 ∼ −Y 2

[
v(s)
e + 1

2
λv(s)

e

dv(s)
e

dx

]
+ 4λγ sin(2x) sin τ for Y →∞. (3.30)

It is simplest to construct the solution to (3.29) by writing it as follows:

ṽ2 = −Y 2

[
v(s)
e + 1

2
λv(s)

e

dv(s)
e

dx

]
+ 4λγ sin(2x) sin τ+ v̀2, (3.31)

in which case equation (3.29) reduces to the simpler form

∂v̀2

∂τ
+ λ

[
ù0

∂v̀0

∂Y
+ v̀0

∂v̀0

∂x

]
− λ∂v

(p)
e

∂x

(
Y
∂v̀0

∂Y
− v̀0

)
=
∂2v̀2

∂Y 2
,

ṽ0 = v(p)
e + v̀0, ũ0 = −Y ∂v(p)

e

∂x
+ ù0.

 (3.32)

It is evident from the form of (3.31) and (3.32) that the solution satisfies the matching
condition given by (3.30). The solution for v̀2 is a complicated exercise and is not
included here only because the result is not particularly instructive.
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There are several important features of this high-frequency approximation. First,
the solution outside the Stokes layer is dominated by the steady solution, so all
of the singularity structure derived by Page & Cowley (1988) immediately applies.
This means that the high-frequency solution exists for λ < 1 and does not for λ > 1.
Second, it means that our ability to obtain solutions to the complete unsteady problem
will depend, at least indirectly, on our ability to solve the steady problem. Third, since
all of the non-trivial unsteady behaviour is restricted to a Stokes layer of thickness
O(ω−1/2), the wall region must be adequately resolved to obtain numerical solutions
to the unsteady equations for large numerical values of ω. We use this information
to our advantage when obtaining the numerical solutions in §5.

4. Similarity solution at the rear stagnation point
The rear stagnation point is perhaps the most interesting and certainly the most

critical region of the flow. Much of the early work on the steady magnetohydro-
dynamic version of this problem (Buckmaster 1971, 1969; Leibovich 1967) focused
on this region, initially with the similarity form of the governing equations and their
solutions. It is well known that they verified that a steady similarity solution satis-
fying the correct boundary conditions exists if λ < 1/2. It is also known that, for
1/2 < λ < 1, a similarity solution can be found if the correct edge velocity is replaced
by a ‘plateau’ velocity, indicating that a singularity exists at the rear stagnation point
in this λ-range, but Buckmaster (1971, 1969) and Leibovich (1967) were unable to
determine an outer-layer structure that would bridge the gap between the plateau
velocity and the edge velocity – a task which went uncompleted until Page & Cowley
(1988). Here, we extend the analysis of the self-similar solution to the oscillatory
case. We begin by deriving the unsteady similarity equations, and then investigate the
stability of the edge boundary condition, as we did in §3.1. A large-y expansion of
the solution verifies that the appropriate edge conditions can indeed be satisfied in
a self-consistent way. Finally, we solve the similarity equations numerically, to verify
that a solution exists.

4.1. The unsteady similarity equations

The general self-similar equation is derived in the standard way. The velocities are
written in terms of a stream function, f, with the x-dependence factored out, so we
have

ve ∼ 2(π − x)(1 + γ cos(ωt)),

v ∼ 2(π − x)fy(y, t), u ∼ 2f(y, t), |π − x| � 1.

}
(4.1)

These solutions do of course represent leading-order terms in an asymptotic series in
odd powers of (π − x). Substitution of (4.1) into (2.7)–(2.9) produces the similarity
equation and boundary conditions governing the flow near the rear stagnation point,

vt + γω sin(ωt) + 2λ
[
f vy − v2 + (1 + γ cos(ωt))2

]
+ 2(v − (1 + γ cos(ωt))) = vyy, (4.2)

v ≡ fy, (4.3)

f(0, t) = v(0, t) = 0, (4.4)

v(∞, t) = 1 + γ cos(ωt). (4.5)
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4.2. Stability of the edge velocity

We know that for the γ = 0 case the edge boundary condition (4.5) is not valid for
all λ. The same is true for the γ 6= 0 situation. We can determine the range of λ for
which (4.5) is valid by testing the stability of the equations as y →∞. Assuming that
the velocity has a limiting value ve as y increases to infinity, the governing equation
(4.2) becomes

dve
dt

+ γω sin(ωt) + 2λ
(
(1 + γ cos(ωt))2 − v2

e

)
+ 2(ve − (1 + γ cos(ωt))) = 0. (4.6)

We now suppose that the edge velocity ve consists of the sum of the specified edge
velocity (4.5) and a time-dependent perturbation, which is not taken to be small.
Substitution into (4.6) gives the governing equation for the perturbation δve:

ve = 1 + γ cos(ωt) + δve(t), (4.7)

d

dt
(δve) + 2 (1− 2λ(1 + γ cos(ωt))) δve = 2λ(δve)

2. (4.8)

Equation (4.8) is a Bernoulli equation, so, with a bit of effort, its exact solution can
be found. Thus, the time-dependent edge velocity for any initial condition δve(0) is
given by

ve(t) = 1 + γ cos(ωt) +
δve(0) e−2(1−2λ)t+4(λγ/ω) sin(ωt)

1− δve(0)2λ
[
e−2(1−2λ)tF(t)− F(0)

] , (4.9)

where

F(t) =
I0(z)

2(2λ− 1)
+ S1(t) + S2(t), (4.10)

S1(t) = 2

∞∑
k=0

(−1)k I2k+1(z)

(2k + 1)2ω2 + 4(2λ− 1)2

× [2(2λ− 1) sin((2k + 1)ωt)− (2k + 1)ω cos((2k + 1)ωt)] , (4.11)

and

S2(t) = 2

∞∑
k=1

(−1)k I2k(z)

4k2ω2 + 4(2λ− 1)2
[2(2λ− 1) cos(2kωt) + 2k ω sin(2kωt)] . (4.12)

The parameter z is 4λγ/ω and In(z) is the modified Bessel function of first kind.
The solution (4.9)–(4.12) has a number of interesting features. Most important, the
solution for F is periodic, of period 2π/ω. If z is small, the Fourier coefficients decay
like zn/n (n = 2k or 2k + 1), i.e. only the first few harmonics are appreciable. On the
other hand, if z is large, the Bessel functions are independent of n at leading order,
so the Fourier coefficients are all important, and many frequencies are a part of the
solution.

The long-time behaviour of (4.9) depends on λ. If λ < 1/2, then the exponentials are
decaying, and the long-time solution is the edge velocity (4.5). If λ > 1/2, however, the
exponentials are increasing and the long-time solution becomes the plateau velocity

vp(t) = 1 + γ cos(ωt)− 1

2λ

e4(λγ/ω) sin(ωt)

F(t)
. (4.13)

Therefore, the critical value of λ that separates the stable ‘edge velocity’ (4.5) from
the stable ‘plateau velocity’ (4.13) is λ = 1/2, independent of γ and ω. Also, nothing
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Figure 2. Phase trajectories for δv̄e; λ = 0.40, ω = 2π and γ = 0.90 for several different initial
values. The dashed parabolic curve is the locus of initial conditions.

special occurs if λ > 1, indicating that the above analysis is unable to determine when
no solution exists. (Remember that we assumed that the velocity is finite at infinity
in deriving (4.6).)

However, the most general initial-value problem for this flow, and for the edge
velocity in particular, indicates that, in fact, a singularity in the edge velocity may
develop at finite times. It is not the primary purpose of this paper to establish the
character of a general initial-value problem for the flow at hand. Notice, however,
that there is much to be learned in this regard from (4.9). In particular, for values
of λ < 1/2, (4.9) shows that if the initial perturbation δve(0) is sufficiently small,
then the second term in the denominator of (4.9) is small uniformly in time, and
hence the perturbation δve vanishes for long times and there is no possibility that
the denominator might vanish (figure 2). Similarly, if λ > 1/2 and the initial
perturbation from the edge velocity is such that the velocity is near enough to the
(stable) plateau velocity, then, once again, the perturbation decays at long time and
no finite singularity develops (figure 3). From figures 2 and 3, a finite-time singularity
will only occur for a sufficiently large initial perturbation from the edge velocity
(which is stable for λ < 1/2) or the plateau velocity (which is stable for λ > 1/2).
The finite-time singularity occurs when the denominator in (4.9) goes to zero, say at
a time ts, provided that the initial condition satisfies the constraint

δve(0) =
1

2λ(e2(2λ−1) tsF(ts)− F(0))
for some ts > 0. (4.14)

For cases when there is such a breakdown, equation (4.8) indicates that the solution
takes the form

δve ∼
1

2λ(ts − t)
+

1− 2λ(1 + γ cos(ωts))

2λ
+ . . . for t→ ts. (4.15)

To deal more completely with this question, solutions for equation (4.8) may easily
be obtained numerically. The results are shown as phase trajectories in figures 2 and
3. (The dashed line in the figures is the locus of possible initial values, since the
system is first order.) In figure 2, for a value of λ = 0.40, the phase trajectories of the
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Figure 3. Phase trajectories for δv̄e; λ = 0.80, ω = 2π and γ = 0.90 for several different initial
values. The dashed parabolic curve is the locus of initial conditions.

solutions show that, regardless of the choice of δve(0) near the origin, all solutions
approach the origin as t→∞, validating the use of (4.5) for values of λ less than 1/2.
Furthermore, the plateau velocity is unstable for this λ and so a large enough δve(0)
(> 1.5 for example) will cause the finite time singularity to occur. On the other hand,
since ve is between 0 and 2 for various values of t with γ < 1, such a large initial
disturbance seems unlikely.

The situation changes somewhat as λ approaches 1/2. In this case, the plateau and
edge velocities almost coincide, so that even small (non-infinitesimal) positive δve will
cause the finite-time singularity to occur.

For λ = 0.80 (> 1/2), figure 3 indicates that if the initial velocity is near the plateau,
then the finite-time singularity is avoided. One the other hand, if the initial condition
is near the (unstable) edge velocity, then the finite-time singularity occurs whenever
δve(0) > 0.

We conclude, then, as implied by (4.14), that for δve(0) sufficiently large, the
rear-stagnation-point similarity solution develops a singularity in finite time. Such
singularities may be rare since they require large initial deviations from the edge
velocity (for λ < 1/2) or the plateau velocity (for λ > 1/2), but the singularity may
be more common for λ ∼ 1/2. For λ > 1/2, if the initial value for v̄e is near the edge
velocity, (4.5), then the appearance of the singularity is more likely.

We proceed in what follows on the assumption that the initial conditions for the
flow are such that (4.5) and (4.13) are indeed the long-time solutions for the edge
velocity. We now further explore the near-edge structure implied by the requirement
that v has a finite limit as y →∞.

Further discussion of the possibilities of finite-time appearance of singularities near
the rear stagnation point may be found in Stocker et al. (1997). As noted earlier,
in exploring the startup of a cylinder from rest, they find that indeed a finite-time
singularity does appear near the rear stagnation point for λ > 1/3, whereas our
work shows evidence for that occurrence for all values of λ > 1/2. For values below
λ = 1/2, our discussion above is not conclusive. What we do show is that even in
λ > 1/2, a decelerating flow seems to be stable.
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4.3. Large-y asymptotic solution

In order to show that a solution exists which satisfies the edge velocity (4.5) for
λ < 1/2 and the plateau velocity (4.13) for 1/2 < λ < 1, we rewrite the velocities as
perturbations about the appropriate edge condition and derive the equation for the
perturbations:

f = yve(t) + Φ(y, t), v = ve(t) + Φy(y, t) = ve(t) + φ(y, t). (4.16)

The question is, does Φ/y go to zero for y →∞? We begin by assuming an algebraic
behaviour in y; then, from (4.16),

Φ ∼ yα+1A(y, t), φ ∼ yα
(
(α+ 1)A+ y Ay

)
= yα B(y, t), (4.17)

Bt + 2λve(t)yBy + 2(1− λ(α− 2)ve(t))B = 0. (4.18)

We require that A and B are non-zero and finite as y, t → ∞, so that (4.17) are in
fact the leading-order contributions. Clearly, α < 0 is required for the perturbation φ
to decay at infinity. Equation (4.18) is readily solved; the solution is

B(y, t) = B0

(
y exp

[
−2λ

∫ t

0

ve(τ) dτ

])
exp

[
−2t− 2λ(α− 2)

∫ t

0

ve(τ) dτ

]
. (4.19)

The function B0(y) is determined, in principle, by matching to the O(1) part of the
boundary layer at t = 0.

We now consider the case 0 < λ < 1/2. The edge velocity is (4.5) and the integrals
in (4.19) are easily evaluated:

B(y, t) = B0

(
y e−2λ(t+(γ/ω) sin(ωt))

)
e−2(1+λ(α−2))t−2(λγ/ω) sin(ωt). (4.20)

The requirement that B(y, t) be non-zero and finite as t→∞ requires that

1 + λ(α− 2) = 0. (4.21)

or

α = 2− 1/λ, (4.22)

which is less than zero for 0 < λ < 1/2. This exponent is independent of γ and ω and
agrees with the steady results of Buckmaster (1969) and Leibovich (1967).

For 1/2 < λ < 1, it would still seem to be the case that boundedness for B as
t→∞ leads to a requirement from (4.19) that determines α; the complication is that
the ‘edge’ velocity is given by (4.13), and determination of that value of α from direct
integration of (4.13) is impossible. However, the integral may be found directly from
(4.8), by dividing the equation by δve and then integrating, which results in

2λ

∫ t

0

δve(τ) dτ = 2(1− 2λ) t− 4λγ

ω
sin(ωt) + log

(
δve(t)

δve(0)

)
. (4.23)

For the range λ < 1/2, one can show by direct substitution of the long-time behaviour
from (4.9) that the log term in (4.23) just cancels the first two terms of the right-hand
side of that equation, so in fact the integral vanishes as t → ∞, recovering (4.5) for
the ‘edge’ velocity, and the value of α already obtained for this case in (4.22).

In the situation for which λ > 1/2, substitution of (4.13) into the log term in (4.23)
leads to the equation

2λ

∫ t

0

δve(τ) dτ = 2(1− 2λ)t + log

(
F(0)

F(t)

)
. (4.24)
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Figure 4. Rear-stagnation-point self-similar solutions at 0, 1/4, 1/2, and 3/4 points in the cycle,
for λ = 0.90, γ = 0.90 and ω = 2π.

Letting t→∞ leads to the required integral,∫ t

0

ve(τ)dτ ∼
1− λ
λ

t+ O(1), (4.25)

which result is (surprisingly) valid for all γ! Substitution into (4.20) and putting to
the coefficient of t in the exponential leads to the proper value for α,

α =
1− 2λ

1− λ , (4.26)

which agrees with the steady solution results, and is now seen to be valid for all values
of γ. Note that (4.25) also indicates that the mean value of δve approaches an average
value of (1− λ)/λ for t→∞, a result which agrees with the numerics described in §5
below. This result passes the self-consistency check for the asymptotics shown here,
namely that α < 0, which is clearly true according to (4.26). Finally, the numerical
results from §4.4 and also from §5 are entirely consistent with this value.

4.4. Numerical integration of the equations

To numerically verify the existence of a similarity solution at the rear stagnation
point, the exact similarity equation was solved in each range of λ for |γ| < 1 and
ω = 2π. The numerical problem was formulated as an exact perturbation about the
steady flow. A logarithmic coordinate transformation (Canuto et al. 1988) was used
in the y-direction to capture the algebraic decay of φ while maintaining sufficient
resolution near the wall. This transformation worked well except for λ = 1/2, where
the near-logarithmic decay of φ made it difficult to both capture the boundary layer
and resolve the wall region. Second-order central differences were used in the y-
direction and second-order backward differences were used in the t-direction. The
steady flow was used as the initial condition and the solution was marched in time to
t = 8, which was sufficient to reach the long-time periodic behaviour. Two grids were
used in the numerical solution: Ny × Nt = 500 × 800 and 1000 × 1600. The results
were improved with Richardson extrapolation.
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In order to solve the exact similarity equation for 1/2 < λ < 1, the exact plateau
velocity is required, so (4.6) is numerically integrated to obtain that edge condition;
this is simpler for computational purposes than actually using results (4.10)–(4.13).
The numerical solution of the similarity equation verifies that a similarity solution
can be found for λ < 1, γ < 1, ω = 2π. Figure 4 shows typical numerical results at
the 0, 1/4, 1/2, and 3/4 points of the last oscillatory cycle, and includes a reversing
plateau velocity.

In the next section, the complete quarter-layer equations are integrated numerically
to determine the boundary in the γ, λ parameter space where an unsteady breakdown
in the solution occurs.

5. Numerical integration of the quarter-layer equations
When not restricted to an asymptotic limit, numerical methods are required to

solve the quarter-layer equations. The choice of a computational coordinate system
is of paramount importance for this numerical problem. The choice of numerical
discretization is also crucial in obtaining good numerical results.

5.1. Solution of the steady equations

We know from the large-ω asymptotics that the steady solution dominates the outer
part of the boundary layer, so we take advantage by generating the grid for the
unsteady problem using the steady equations. The presence of a singularity at x = π
for 1/2 6 λ 6 1 necessitates the use of a grid transformation to capture the rapid
thickening of the boundary layer as the rear stagnation point is approached. In
preliminary attempts to solve the equations, we tried a simple x-independent y-grid
stretching for the unsteady equations. Previously, Page (1985) had used a simple
x-dependent y-grid stretching for the steady equations. Neither transformation was
completely satisfactory in the region π− x� 1 for λ near 1. A better transformation
for the steady equations is given by Page & Cowley (1988), who used a modified Von
Mises (mVM) transformation based on the stream function ψ that eliminates the Von
Mises singularity at the wall and front stagnation point. In addition to capturing
the boundary layer, this transformation has the advantage of eliminating u from the
steady momentum equation, decoupling momentum from continuity. This is a major
simplification analytically, since one fewer equation must be solved, and numerically,
since u becomes unbounded as y →∞.

The generalization of mVM to the unsteady case is not very useful. Most impor-
tantly, if the oscillation is large enough so that the flow reverses, ψ is negative and y
is a double-valued function of ψ in the region of flow reversal. Thus, the unsteady
mVM is a good transformation only if γ is less than the value required for periodic
flow reversal, which restricts γ in an undesirable manner. Instead, we utilized mVM
to first solve the steady problem and then used the steady solution to generate the
grid transformation η(x, y) for the unsteady problem. This transformation has the
advantage of producing the correct growth as x → π without needlessly restricting
γ. A shortcoming of mVM, however, is that it fails to resolve the wall region as
x→ π. Page & Cowley (1988) overcame this problem with unequal step sizes in η, a
procedure that we believe is too cumbersome for the unsteady problem.

In searching for a better coordinate transformation, we ultimately abandoned mVM
in favour of a transformation utilizing the large-y asymptotics of the steady equation
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(cf. Page & Cowley 1988; Buckmaster 1969)

1− v(ymax(x))

ve
= ε′

=
A∞

cos5(x/2)
y−(3+1/λ)
max exp(−λ(ymax(x)− δ∗(x))2 cos2(x/2)), (5.1)

where ε′, A∞, and ymax(x = 0) are determined by analysing the numerical solution of
the front-stagnation-point similarity solution as y → ∞. They are all functions of λ.
The numerical solutions of the steady equations are insensitive to the precise value
of A∞, which is very difficult to obtain accurately.

We define the computational coordinate η(x, y) in two stages. First, we scale out
the boundary-layer growth ymax(x),

y(x, y) ≡ y

ymax(x)
, 0 6 y 6 1. (5.2)

We then move the coordinate points to resolve the wall region near x = π, without
overdepleting the points in the edge region, and retain a uniform grid near x = 0,
where grid stretching is unnecessary:

y = η

[(
ymax(0)

ymax(x)

)(
e−αη

β − e−αf(η)
)

+ f(η)

]
, 0 6 η 6 1, (5.3)

f(η) =
1− e−αη

β

1− e−α
, (5.4)

where α and β are control parameters.
In solving the steady equations, we obtained the best results by formulating the

velocities as perturbations about their edge behaviour:

v0 = 1− v

ve
, u0 = y

dve
dx

+ u. (5.5)

By scaling the velocity by ve, the initial condition is no longer v = 0 at x = 0. Instead,
we obtain the initial condition by solving the front-stagnation-point similarity solution.

To integrate the steady equations, we use O(∆η2) central differences to reduce
the steady partial differential equations to a large system of ordinary differential
equations in the usual method-of-lines approach. We then integrate the system of
ordinary differential equations forward in x with an extrapolation scheme based on
the implicit Euler method (Hairer & Wanner 1991). The scheme is variable step size
and variable-order to control the errors in the x-direction (relative error tolerance
RTOL = 10−7 specified). The method works very well and produces results that agree
with the previous work on the steady problem. The integration includes many more
x-steps than could possibly be used in the unsteady problem, and uses irregular step
sizes as well. To compensate, the code was written to save the coordinate and velocity
data only at given increments of x, which were then used in the unsteady problem.
A typical grid, for λ = 0.9, is shown in figure 5. Since the grid is generated from
the physically relevant steady equations, the grid contains the same singular growth
at the rear stagnation point contained in the boundary-layer solution. This singular
behaviour is nicely captured in figure 5.

The steady solution is also used to generate the initial conditions for the unsteady
problem. We use the uniformly-valid-in-y high-frequency approximation that follows
from (3.24), (3.31). This initial condition works well and minimizes the time to reach
the long-time solution of the unsteady equations.
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Figure 5. 256× 256-point grid generated from the steady solution for λ = 0.9 (not all grid points
plotted): (a) the singular growth of the grid (and boundary layer) as one nears the rear stagnation
point at x/π = 1; (b) a close-up of the grid nearer to the wall.

5.2. Solution of the unsteady equations

The numerical solution of the unsteady equations is difficult to obtain – harder than
one might at first suppose. The complicated singularity structure at x = π disrupts
the numerical solution away from x = π, especially when there is significant flow
reversal. For λ < 1/2, almost any stable consistent integration scheme works, but for
λ > 0.75, the ability to get any numerical solution depends critically on the choice of
discretization.

We formulate the equations in the x, η-coordinates generated by the steady solution.
The velocities are again written as perturbations about the edge velocity

v = v − ve, u = y
∂ve

∂x
+ u. (5.6)

By not scaling the velocity v by the edge velocity as in the steady equation, we can
use boundary condition (2.12).

We discretize the governing partial differential equations with the method-of-lines
approach. We tried virtually every finite-difference spatial discretization imaginable.
The only discretization that was stable enough for λ > 0.75 utilizes second-order
central differences for the diffusion term and second-order upwind differences for
both the x and the η convective terms. Using upwind differences in the η-term
is the crucial step toward a sufficiently stable method. Adjacent to the wall and
edge, η-upwind differences have to be replaced by central differences, to no ill-effect.
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Figure 6. Time history for the velocity component parallel to the wall, at a location near the wall,
for λ = 0.9, γ = 0.9 and ω = 2π: (a) near the front stagnation point (at x = 1/32, η = 1/16), (b)
near the rear stagnation point (at x = 31/32, η = 1/4). The initial condition is the high-frequency
asymptotic solution given in §3.

The continuity equation is discretized by solving for u as an integral of v and then
evaluating the integral with the trapezoidal rule. This effectively eliminates u as an
unknown, so that only the momentum equation remains.

We integrate the discretized momentum equation using an extrapolation scheme
based on the linearly implicit Euler scheme (Hairer & Wanner 1991). (The scheme
is fully implicit for the steady equation.) In the integration, we use not the exact
Jacobian, but only the Jacobian terms that result from the discretized diffusion term.
In this way, the Jacobian is tridiagonal and does not change in time, which leads
to efficient solution of the equations. Since the scheme is only linearly implicit, no
iteration is required. The apparent cost of linear-implicitness is that the scheme is not
unconditionally stable, but requires a CFL-like condition on ∆t. On the other hand,
the program uses step size and order control to efficiently solve the equations using
RTOL = 10−6 as the relative error tolerance.

5.3. Numerical results

Although the temporal errors are controlled automatically by the computer program,
we still must determine the spatial-grid spacing. Starting with a 32 × 32 grid, after
successively doubling the number of grid points in each direction until reaching a 256
× 256 grid, we determined that the velocities are accurate to three places, with better
accuracy achieved for smaller λ and/or smaller x. Excessive execution time limits us
to the 256 × 256 grid.

With an adequate grid spacing determined, the next question is how many time
steps are required to reach the long-time behaviour. Figure 6 shows the unsteady
behaviour at two points in the boundary layer for λ = 0.90, γ = 0.9, ω = 2π. The
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Figure 7. Velocity profiles near the rear stagnation point, at 0, 1/4, 1/2 and 3/4 points in the cycle.
The final profile (the thickest) is at x/π = 1− 1/256, and the previous ones are at successive 1/256
steps forward of this locution. The results are shown scaled; the actual boundary layer is growing
dramatically in y. For this case, λ = 0.40, γ = 0.90 and ω = 2π.

first location at x = 1/32, η = 1/16 is near the front stagnation point and near the
wall. At this location, diffusion effects are high and the upstream flow is virtually
free of initial transients. As a result, a very regular long-time oscillatory behaviour
is established after about 1/2 of a cycle (figure 6a). Near the rear stagnation point
at x = 31/32, η = 1/4, the situation is more complicated. At this location, there
is significant grid stretching, so that η = 1/4 is quite far from the wall (in fact,
this location is within the free shear layer connecting the plateau velocity to the
edge velocity). Furthermore, transients from upstream pass through this point as
they are advected downstream. If we examine figure 6(b) carefully, we see that the
velocity begins with one type of periodic behaviour. Then, between t = 2 and t = 3,
disturbances kick the system out of the initial periodic solution and the velocity
latches onto its long-time periodic solution. The transients have sufficiently decayed
by about t = 7 to 8, to make it possible to treat the last cycle as the long-time periodic
solution.
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Figure 8. As figure 7 but for λ = 0.70, γ = 0.90 and ω = 2π.

We discuss below the results obtained from integrating the equations for a variety
of 0 < λ < 1, 0 < γ < 1, ω = 2π. For the grid control parameters, we found
α = 85, β = 3 to be adequate for all the physical parameter values. Figure 7 presents
the last eight velocity profiles (normalized by the steady part of the edge velocity)
at the 0, 1/4, 1/2, and 3/4 times in the oscillation cycle for λ = 0.40, γ = 0.90, at
x/π = 248/256, ..., 255/256 (with mesh parameters A∞ = 30.43 and ymax(x = 0) = 23.3,
see (5.1)). Since this value of λ is less that 1/2, there is no plateau and the velocity
profiles all have the usual boundary-layer profile appearance. The figure clearly shows
the periodic behaviour of the velocity profiles and includes periodic flow reversal. We
also note that the velocity does not overshoot the edge velocity.

The second case shown here is one for which λ = 0.70, γ = 0.90, with parameters
A∞ = 0.5904 and ymax(x = 0) = 9.08 (figure 8). Here, we clearly see the lower, plateau,
and free-shear-layer regions of the boundary layer. The lower region and plateau
region are in excellent agreement with the rear-stagnation-point similarity solution.
This value of γ is sufficiently large to cause the entire plateau region to periodically
reverse, so that the region of reversed flow can become quite large. The lower-region
profiles can show considerable overshoot of the plateau velocity, a condition absent in
the steady problem. The velocity does not, however, overshoot the edge velocity. Note
that the distance from the free shear layer to the wall does not change appreciably
during the cycle for this value of λ.
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Figure 9. As figure 7 but for λ = 0.90, γ = 0.90 and ω = 2π.

Figure 9 shows the results for λ = 0.90, γ = 0.90, with parameters A∞ = 0.3696
and ymax(x = 0) = 7.76. Note that ymax(x = 0) has been decreasing as λ increases
because the increased advection thins the boundary layer near the front stagnation
point as it greatly increases the boundary layer thickness near the rear stagnation
point. Once again, the boundary layer shows the lower, plateau, and free-shear-layer
structure. The lower region and plateau region are also in excellent agreement with
the rear-stagnation-point similarity solution, figure 4.

The parameter space is mapped out in figure 10. We include therein critical
γ(λ) curves (at ω = 2π) for periodic flow reversal at the rear stagnation point,
periodic flow reversal at the front stagnation point, periodic flow reversal of the edge
velocity, periodic flow reversal of the plateau velocity, as well as the line λ = 1/2
which divides the stable edge velocity (4.5) from the stable plateau velocity (4.13)
for the similarity solution, and the line λ = 1, which is the upper limit on stable
solutions.

6. High-frequency solutions for full cylinder
To this point, we have taken the oscillation frequency to be low, in particular

of order ΩE1/2. In this section, we turn briefly to the case for which the fre-
quency, ω′, is in fact of order Ω. It turns out that many of the details are very
similar to those found in §3.3, so some of the analysis will not be repeated here.
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Figure 10. The γ, λ parameter space for ω = 2π. (a) region of no flow reversal, (b) minimum γ for
periodic flow reversal at the rear stagnation point, (c) minimum γ for periodic flow reversal at the
front stagnation point, (d) minimum γ for periodic reversal of the plateau velocity, (e) minimum γ
for periodic reversal of the edge velocity, (f) minimum λ for a stable plateau velocity, (g) no stable
solution.

What happens is that, as ω increases through larger and larger values, the thin-
ner lower partition of the quarter layer in §3.4 eventually, as ω′ finally attains
O(Ω), takes thickness E1/2, in a layer distinct from the quasi-steady quarter layer
above it. In this Section, we examine briefly some elements of the flow for such a
case.

We define the time, t′ = t̂/Ω, and the frequency, ω′, is written as ω′ = Ωω̂. In
this case, the equations of motion and boundary conditions remain (2.2)–(2.5), except
that the time term in (2.3) is replaced by ∂u/∂t̂. Proceeding to the outer expansion,
we write u = u0 + E1/4u1 + E1/2u2 + . . .. Substitution into (2.2) and (2.3) leads to the
following result:

∂2

∂t̂2
∇2 pn +

(
∂2

∂t̂2
+ 4

)
∂2pn

∂z2
= 0 for n 6 2, (6.1)

and (un, vn) are simply related to pn. If the cylindrical obstacle spans the entire
gap between the plates, then the interior flow is z-independent, since the boundary
conditions are z-independent. In that case, ∂pn/∂z ≡ 0 for all z, and so (6.1) reduces,
for a time-periodic state, to

∇2
1pn = 0, (6.2)

where ∇2
1 is an horizontal Laplacian. In that case, the outer solution for n = 0 is,

again, the classical flow past a circular cylinder, and the leading-order edge velocity
for the boundary layer(s) on the surface is given by (2.9) again. Therefore,

v → 2 sin(x)(1 + γ cos(ω̂t̂)) at the layer edge. (6.3)



Oscillatory flow past a circular cylinder in a rotating frame 125

6.1. The quarter layer

In the usual fashion described earlier, the equation valid in the quarter layer may be
derived. As in §2, we put r − a = E1/4y into (2.2)–(2.3), and the result is

∂v

∂x
+
∂u

∂y
+
E1/4

a

∂

∂y
(y u) = 0, (6.4)

∂v

∂t̂
+ E1/2 λ

(
v
∂v

∂x
+ u

∂v

∂y

)
+ 2E1/2

([
v − v(p)

]
+

v(p)

(1 + ω̂/2)1/2

)
=
∂ve

∂t̂

+E1/2 λ ve
∂ve

∂x
+ 2E1/2

([
ve − v(p)

e

]
+

v(p)
e

(1 + ω̂/2)1/2

)
+ E1/2 ∂

2v

∂y2
, (6.5)

where v(p) denotes the oscillatory portion of v, which has zero mean. The third term
on each side of this equation takes a quite different form from that in equation (2.7),
for the case for small ω′/Ω. The reason is that the periodic portion of the velocity
at the Ekman layer’s edge leads to a different Ekman suction law. Since the Ekman
layer is linear in this parameter range, unlike the quarter layer, the oscillatory and
non-oscillatory suction laws may simply be added, and what is shown in the third
term of (6.5) reflects both elements of that Ekman suction. It turns out, as we shall
see below, that this modification of the stretching term has no leading-order effect on
the flow in the quarter layer.

The asymptotic expansion in this layer then proceeds as

(u, v) = (u0, v0) + E1/4(u1, v1) + E1/2(u2, v2) + . . . . (6.6)

Substitution into (6.4), (6.5) leads to the equation

∂

∂t̂
(v0 − v0 e) = 0. (6.7)

The only solution to this equation that can satisfy the boundary conditions is given
by

v0 = v(p)
e (x, t) + V0(x, y), u0 = −yv(p)

e x +U0(x, y),

v(p)
e = 2γ sin(x) cos(ω̂t̂),

}
(6.8)

which is essentially identical to the decomposition adopted in (3.30).
The next term in the series for v, namely v1, satisfies the same equation (6.7). As

we shall see in §6.3, the matching condition for v1 for y → ∞ is that v1 approach a
function of x alone – there is no time dependence. Therefore, the integral of (6.7)
for v1 is simply v1 = v1(x, y) ≡ V1(x, y). Combined with the continuity equation for
(u1, v1), derived from (6.4), it is easily shown that the second-order radial velocity
component in the quarter layer is given by

u1 =
y2

a

∂v(p)
e

∂x
+U1(x, y) + u1,w(x, t̂) and U1(x, 0) = 0. (6.9)

It turns out that the equations obeyed by (U1, V1) are steady state; they are not
written down here for brevity. A bit more will be said in §6.3 about their solution.

A careful examination of the boundary-layer structure on r = a+ in this parameter
range reveals that the familiar ‘one-third layer’ of steady flow is absent; the distin-
guished limit disappears because of the largeness of the unsteady term. It is replaced
by another distinguished limit: a Stokes layer. A first thought would suggest that a
one-third layer remains, to connect to the steady portion of v; however, even though
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the outer, quarter layer is essentially steady, the oscillatory component, v(p)
e in (6.8), is

passed through the layer unchanged, so any layers beneath the quarter layer see an
unsteady ‘outer’ flow to which to match. Hence, the matching below the quarter layer
is to the Stokes layer, and there is no ‘one-third’ layer. As a referee has suggested,
things change in the limit γ → 0; for γ sufficiently small, the outer layer is truly
steady, and the one-third layer scale is recovered. We have not explored that limit
here, and in this Section, γ = O(1) – which assures the absence of the one-third layer.

Therefore, as in §3.4, to match to the layer below the quarter layer, we expand this
solution for small y. Since the thinner layer in this case has a width proportional
to E1/2, we write r − a = E1/2Z , so clearly y = E1/4Z . Utilizing a Taylor series
evaluation of (6.6) near y = 0, and making a change of variable, we obtain the
matching condition for the thin layer beneath the quarter layer. Thus,

v ∼ v(p)
e + V0 y(x, 0)E1/4Z + E1/2

[
v2(x, 0) + V1 y(x, 0)Z + 1

2
V0 yy(x, 0)Z2

]
+ . . . . (6.10)

6.2. The Stokes layer

The layer beneath the quarter layer is a Stokes layer, and substitution into (2.3) leads
to the following equation:

R(v) = E1/2N(v), R(v) ≡ ∂v

∂t̂
− ∂2v

∂Z2
, (6.11)

where N is a nonlinear operator. An asymptotic expansion

v = v(0)(x, Z, t̂) + E1/4 v(1)(x, Z, t̂) + E1/2v(2)(x, Z, t̂) + . . . , (6.12)

substituted into (6.11) leads to R(v(0)) = 0, and its solution is

v(0) = 2γ sin(x) Re
(

eiω̂t̂
(
1− e−(iω̂)1/2 Z

))
. (6.13)

The next term, v(1), satisfies the same equation, R(v(1)) = 0, and the solution is, by
matching to (6.10), easily seen to be given by

v(1) = V0(x, 0)Z. (6.14)

The next term involves the nonlinear operator N, and is not included here, since it
is very like the analysis in §3.4.

The leading-order radial velocity component in the Stokes layer, u(0), may then be
determined from the scaled continuity equation. Rewriting the Z → ∞ limit of that
radial velocity in quarter-layer variables leads to

u ∼ −2γπ cos(x)
[
y cos(ω̂t̂)− E1/4ω̂−1/2 cos(ω̂t̂− π/4)

]
for y →∞. (6.15)

Matching to the quarter-layer asymptotic series and using (6.9) then determines
u1,w to be given by

u1,w = −2γ cos(x)ω̂−1/2 cos(ω̂t̂− π/4). (6.16)

6.3. Higher-order outer flow

The solution for higher-order terms in the outer region, away from the boundary
layers, determines the effects of those layers on the outer flow. The effects will be small,
but this is the way in which rectification would appear in this formulation. Consistent
with the velocity expansion noted early in this section, the velocity potential, which
is harmonic (see (6.2)), has the following asymptotic expansion:

φ = φ0(r, θ, t) + E1/4φ1(r, θ) + E1/2 φ2(r, θ, t) + . . . . (6.17)
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The first term is, of course, the circular-cylinder flow already utilized, for which the
unsteadiness is simply a multiplier. We must now look into the detailed matching to
the quarter layer to deduce boundary conditions on φ1 and φ2. The equations for
(U0, V0) and (U1, V1) lead to the following behaviour for ur , the radial velocity, at the
quarter-layer edge (y →∞), which must match to the outer flow:

πur ∼ u0E
1/4
[
1− E1/4 y

a

]
− E1/2 ∂

∂x

∫ ∞
0

(v1 − v1e) dy

+E1/2u1,w(x, t̂)− E1/2y
∂v1e

∂x
+ o(E1/2), (6.18a)

u0 ∼ −y
∂v(s)

e

∂x
− ∂

∂x

∫ ∞
0

(
V0 − v(s)

e

)
dy, (6.18b)

where the (s) superscript refers to the non-oscillatory component of ve. Most of
the details of the matching can be worked out easily and are not included here.
In summary, in matching u to ∂φ/∂r, a number of terms arising out of the Taylor
expansion of ∂φ/∂r on r = a match to terms proportional to y and y2 in (6.18). Apart
from those, the following conditions emerge:

∂φ0

∂r
= 0 at r = a, (6.19a)

a
∂φ1

∂r
= − ∂

∂x

∫ ∞
0

(
V0 − v(s)

e

)
dy, (6.19b)

a
∂φ2

∂r
= − ∂

∂x

∫ ∞
0

(v1 − v1e) dy + u1,w. (6.19c)

The first term clearly determines the familiar function for flow past a circular cylinder,
φ0, as discussed earlier in the paper and used throughout. The quarter-layer solution
allows the right-hand side of (6.19b) to be worked out, and so φ1 can be entirely
determined. Thus, the quantity v1 = (1/r)∂φ1/∂θ at r = a is non-zero; it leads to the
non-zero edge condition for v1 in the quarter layer. In fact, since the right-hand side
of (6.19b) is clearly steady, the result for φ1 is identical to that worked out by Walker
& Stewartson (1972) for steady flow. Hence, in this parameter range, effects of the
interaction of unsteadiness with the topography cannot occur at O(E1/4), but not
until O(E1/2) – as is evident from (6.19c). The function φ2 cannot be written down
by hand, since the integral involved in (6.19c) must be obtained from our numerical
solution of the quarter-layer equations. However, it is clear from the form of (6.19c)
that the ‘inflow’ at the layer edge which drives the φ2 solution is the sum of a steady
component – determined entirely from the steady (u1, v1) quarter-layer solution – and
an oscillatory component arising in the Stokes layer, u1,w , which is given precisely by
(6.16). Thus, if we make the decomposition

φ2 = φ
(s)
2 (r, θ) + φ

(p)
2 (r, θ, t̂), (6.20)

then the unsteady portion of this high-order solution is

φ
(p)
2 = − 2γ cos θ

ω̂1/2
cos(ω̂t̂− π/4)

a2

r
. (6.21)

While there is clearly an 1
8
th cycle phase lag in this third term, at these high frequencies

the unsteadiness seems inconsequential. There is no rectification, and clearly, since φ(s)
2
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can be shown to be odd in θ – and so v(s)
2 is even – there no evidence of any left–right

asymmetry of the kind reported by Boyer & Zhang (1990b) in their experiments.

7. Discussion
Our goal has been to determine the range of λ and γ for which the quarter-layer

equations have a solution. Beginning with the analytical results, we found in §3.1 that
the edge velocity is a stable solution of the infinite-y limit of the governing equations
only if λ < 1 (independent of γ), indicating that a solution of the equations cannot
satisfy the boundary conditions for λ > 1. Furthermore, in §3.4, we found that the
large-ω limit of the equations is essentially the steady solution plus a Stokes layer
adjacent to the wall, so that the leading-order solution exists for all λ < 1.

Second, our investigation of the rear-stagnation-point similarity solution indicates
that the similarity solution satisfies the usual edge velocity for λ < 1/2, independent
of the value of γ. We found that a time-periodic velocity ‘plateau’ arises at the similar
solution’s ‘edge’ for values of λ between 1/2 and 1, and that the plateau velocity
itself is a stable solution of the infinite-y limit of the similarity equations. On the
other hand, further investigation of the large-y behaviour of the solutions indicates
that a finite-time singularity may arise at the rear stagnation point for sufficiently
large edge perturbations for all λ > 0, but such large perturbations may be rare in
practice.

Our numerical solutions of the full quarter-layer equations indeed verify that
long-time periodic solutions exist, and that the solution structure near the rear
stagnation point consists of a lower shear layer and plateau region (which are in
complete agreement with the similarity solution) and a free shear layer that connects
the plateau region to the free-stream flow. These numerical solutions support our
theoretical conclusion that the quarter-layer equations have solutions for λ < 1 and
that this critical λ is independent of γ and ω.

Finally, we noted briefly that, for the case of a full-height cylinder, the surface
boundary layer splits into an essentially steady quarter layer and a thinner Stokes
layer – so the rear-stagnation-point behaviour is presumably just that of steady
flow.

The experiments reported by Boyer & Zhang (1990b) are directly relevant to this
work. Though the bulk of the flow visualization images shown are for ω′/Ω = 2,
rather than the small values of ω′/Ω studied here (for short cylinders), there is a
noticeable discrepancy between our results and those experiments: the visualizations
plainly show a strong left–right asymmetry, part of which is due to rectification,
and for which there is no evidence in the results reported here, either for the low-
frequency problem of §§3–5 or the full-cylinder O(1) frequency results of §6. Generally,
the experiments were run at Rossby numbers well beyond values for which this theory
is valid, i.e. for λ well beyond 1. Neither does the solution for separated flow past
a cylinder given by Page (1987) for λ = O(1) show any evidence of such asymmetry.
Secondly, for obstacles that do not span the entire gap between the plates, the only
results given here are for small values of ω′/Ω. The combination of non-full-height
obstacles and larger frequencies makes the outer flow quite different and very possibly
asymmetric. So, further theoretical investigation is required to discover the reasons
for such disagreement.

The rectification issue requires a bit more discussion. In the paper by Walker
& Stewartson (1974) on homogeneous slow flow past an hemisphere, there is an
asymmetry that arises at higher order in the outer flow, which is induced by vortex
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stretching over the hemisphere in the interior shear layer. No such higher-order
asymmetry is seen in the similar flow past a right circular cylinder (Foster 1972).
Since the mechanism of rectification seems to be vortex stretching (Zimmerman
1980), no flap-topped bump in the range ε = O(E1/2) could exhibit that, since the
Taylor–Proudman theorem prohibits fluid columns from upstream from passing over
the top of the bump. We suspect that a repeat of this analysis, for say an hemisphere
or a cone, would show evidence of rectification, though it will be small because ε is
small.

The authors are grateful to Dr Peter Duck for several helpful discussions about this
problem, and to the referees, each of whom provided several helpful clarifications,
including, from one referee, a correction to the form of (6.5).

Appendix. The v1 correction for λ� 1

The small-λ regular perturbation solution is discussed in §3, with the results for the
first term in the (3.7) series given there. Substitution of (3.7) into (2.7), (2.8) leads to
the equations satisfied by (u1, v1); the solution for v1 is in the form

v1 = 2π sin(2πx)(vh + vp), (A 1)

where

vh = − K0e
−
√

2y − e−Ay [K1 cos(ωt− By) +K2 sin(ωt− By)]

−e−A2y [K3 cos(2ωt− B2y) +K4 sin(2ωt− B2y)] , (A 2)

and

vp = e−
√

2y

[
y

4

(
y +

3√
2

)
+
γ

ω

(
C0 cos(ωt) + (

√
2y + C1) sin(ωt)

)]
+ e−Ay

[
γ2
[ 1

A2 + B2

(
1

2
cos(By)− 1

ω
sin(By)

)
+

2

ω

(
2

ω
cos(ωt− By)− 5

4
sin(ωt− By)

)
cos(ωt)

+
2

ω

(
(
Ay

2
+

3

4
) cos(ωt− By)− By

2
sin(ωt− By)

)
sin(ωt)

]
+ γ

(
y(
y

4
+ C2) cos(ωt− By) + C3y sin(ωt− By)

)]

+ γ2e−2Ay

[
C4 +

1

18 + 2ω2
(3 cos(2(ωt− By)) + ω sin(2(ωt− By))

]
+ γe−(A+

√
2)y [C5 cos(ωt− By) + C6 sin(ωt− By)] . (A 3)

The various constants in this solution are then given by

A2 = Re
(
(2 + 2iω)1/2

)
=
(
(1 + ω2)1/2 + 1

)1/2
, (A 4a)

B2 = Im
(
(2 + 2iω)1/2

)
=
(
(1 + ω2)1/2 − 1

)1/2
, (A 4b)
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C0 =
4

ω
+

√
2B

A2 + B2
, C1 = 2−

√
2A

A2 + B2
, (A 5a, b)

C2 =
5

4

A

A2 + B2
− 1

2
√

2
, C3 =

5

4

B

A2 + B2
, (A 5c, d)

C4 =
1

2(2A2 − 1)

[
1

2
+

1

A2 + B2

]
, (A 5e)

C5 =
2A(
√

2A+ 1)−
(
A2/
√

2 + A+
√

2
)(

1/
√

2 +
√

2/(A2 + B2)
)

2(
√

2A+ 1)2 + B2
, (A 5f)

C6 =
ω/
√

2−
(
B + 3ω/2

√
2
)(

1/
√

2 +
√

2/(A2 + B2)
)

2(
√

2A+ 1)2 + B2
, (A 5g)

K0 = γ2

[
1

2(A2 + B2)
+

2

ω2
+ C4

]
, (A 6a)

K2 = γ

[
C1

ω
+ C6

]
, (A 6b, c)

K3 = γ2

[
3

18 + 2ω2
+

2

ω2

]
, K4 = γ2

[
ω

18 + 2ω2
− 1

2ω

]
. (A 6d, e)
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